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The Korteweg—de Vries (KdV) equation and its single, periodic cnoidal wave solution have been
known for a century. The present paper focuses on N-degree of freedom cnoidal wave solutions to the
KdV equation (here N ranges up to 1000) and addresses some of the issues necessary for the practical im-
plementation of the formalism in both theoretical and experimental physics. To this end, the ®-function
representation is exploited and it is shown that an important class of solutions to the periodic KdV equa-
tion consists of a linear superposition of N cnoidal waves plus their mutual nonlinear interactions. The
formulation may be viewed as a generalization of ordinary, periodic Fourier series to nonlinear, integra-
ble wave motion. Each cnoidal wave is a nonlinear spectral component in the theory and has a form that
depends upon the value of its modulus m, 0 <m =< 1. The waves generally take the familiar shape of sine
waves (m ~0), Stokes waves (m ~0.5), and solitons (m ~1). A number of applications and aspects of
the ®-function approach are addressed, including (1) solutions of the periodic KdV equation for which
statistical mechanical and stochastic realizations may be analyzed in terms of random soliton modes in-
teracting with a random radiation sea, (2) the numerical computation of N-degree-of-freedom solutions
to the periodic KdV equation, (3) the time series analysis of experimental shallow water wave data, (4)
the fractal structure of the wave numbers and phases in KdV wave trains. The results of these studies
are seen to improve the physical understanding of nonlinear wave dynamics governed by the periodic
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I. INTRODUCTION

The inverse scattering transform generally solves cer-
tain nonlinear partial differential equations that have soli-
ton solutions. The Cauchy problem for these equations,
with both infinite-line and periodic boundary conditions,
has been studied extensively [1-21]. In the present paper
I focus on solutions to soliton equations that have period-
ic boundary conditions such that stationarity and ergodi-
city are ensured [22]. The physical reason for consider-
ing this class of wave trains is to allow application of the
results to nonlinear wave dynamics in the laboratory
[23,24], to ocean surface waves [25,26], to nonlinear sta-
tistical mechanics, and to stochastic dynamics [22,27]. In
these studies the focus has been on the Korteweg-de
Vries (KdV) equation, which generally describes the
propagation of nonlinear long waves in dispersive media
[1-5,28].

The above physical problems have previously been
studied extensively in the so-called hyperelliptic function
representation [29-35], in which periodic solutions to the
KdV equation are computed as the linear superposition
of a set of nonlinear waves referred to as hyperelliptic-
function oscillation modes. In the present paper periodic
motions of the KdV equation are studied in an alternative
basis called the ®-function representation. This latter
formulation, which arises as an algebraic geometric
linearization of the hyperelliptic modes [10-14], is ex-
ploited here as a tool for studying a number of interesting
problems in nonlinear wave physics.

To this end the applications of the ®-function formula-
tion discussed below have been made possible by a num-
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ber of recent advances in numerical analysis [29-36],
which substantially speed up the requisite computer cal-
culations. The present paper develops several results that
shed light on certain physical aspects of periodic, non-
linear wave motions known to be integrable by the in-
verse scattering transform. Why, when hyperelliptic
functions have been shown to be so useful in previous
work [22-27], do I now consider the ®-function repre-
sentation? What advantages, if any, do ® functions have
over hyperelliptic functions for the study of nonlinear
wave dynamics? A major objective of this paper is to
suggest that ® functions, long neglected because they are
so difficult to compute numerically, may instead, thanks
to improvements in numerical algorithms, offer an alter-
native approach that compliments previous studies using
hyperelliptic functions. A major goal for this paper is to
document some of these results.

In order to address the physical perspective given
herein it has been necessary to develop a number of
mathematical results with regard to the ® functions.
These results are provided in Theorems 1-3 given in the
sections below, where interpretations in terms of non-
linear wave physics are also provided. In order to set the
stage for what follows I first address the periodic,
traveling-wave solution to the KdV equation, the cnoidal
wave.

A. Cnoidal wave solution of the KdV equation
The KdV equation is given by

M, tcon, tanm, +B1,,,=0, 0=x=L (1.1)
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for L the spatial period. The coefficients ¢, a, and S de-
pend on the particular physical application. For surface
water waves c,=Vgh, a=3cy,/2h, and B=cyh?/6,
where 4 is the water depth and g is the acceleration of
gravity. The important parameter A=a /68, a ratio of
nonlinearity to dispersion, is used below in the inverse
scattering transform formulation. Many physical appli-
cations of the KdV equation are known and are discussed
in the literature [1-7,28].

Korteweg and deVries [37], 100 years ago, found their
equation (1.1) and an associated periodic traveling-wave
solution that is known as the cnoidal wave:
4k> & n(—1)"q"
}\' 2 1— q2n

n=1

n(x,t)= cos[nk(x —cyt)]

=2A4qcn’*([K (m)/7][k(x —Cot);m) . (1.2)

The Jacobian elliptic function cn has modulus m given by

37 A, 34,
=47°U , U= .

2k2n? 8k2h?

A, is the amplitude of the cnoidal wave, U is the Ursell
number, k is the wave number, and A is the water depth.
K (m) is the usual elliptic integral [38,39]. The nonlinear
phase speed C, of the cnoidal wave has the formula

Co=co{1+2A44/h —2k*h*K*(m)/37%} .

mKYm)= (1.3)

(1.4)

The series representation given in (1.2) for the cnoidal
wave is the Stokes series solution to the KdV equation
[8]. When the modulus m —0 the cnoidal wave reduces
to a sine wave; when m — 1 the cnoidal wave approaches
a solitary wave or soliton. The KdV equation thus offers
a way to simultaneously include both nonlinearity (the
term anm,) and dispersion (B7,,,) in a simple model
(1.1). In fact, it is the balance between nonlinearity and
dispersion that gives rise to the stability of the soliton
solutions.

B. Fourier analysis of the linearized KdV equation

The periodic traveling-wave solution to the linearized
KdV equation with periodic boundary conditions [set
a=0in (1.1)]

nt+co77x +B77xxx =O’ 0=x=L (15)

is a simple cosine function a cos(kx —wt+¢), where
k =2m/L is the wave number, L is the spatial period, a is
the wave amplitude, and ¢ is the phase. Here k and o are
the usual wave number and frequency, linked by the
dispersion relation w=w(k) [see (1.8) below]. Spectral
solutions to the linearized KdV equation (1.5) can be
written as a linear superposition of these simple solutions,
i.e., as an ordinary Fourier series for N degrees of free-
dom,
N

N(x,1)= 3 a;cos(k;x —w;t+¢;) (1.6)

j=1

[see Ref. [30] for a discussion of the linear problem (1.6)
written in terms of inverse scattering transform vari-
ables]. Here the a; are the Fourier coefficients and the ¢ I
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are the Fourier phases. The commensurable wave num-
bers k; are given by

k;=2mj/L (1.7)
and the associated incommensurable frequencies w; are

J
governed by the dispersion relation of (1.5),

a)j=c0kj—Bkj3 . (1.8)

One is often interested in the Cauchy problem for the
linearized KdV equation, where 1(x,t=0) is assumed to
be known and 7(x,¢), for all ¢, is then sought. To this end
the Fourier transform of a wave train 7(x,0) consists of
the set of Fourier amplitudes and phases {a;,¢;} for
1=<j = N. Time evolution of the wave motion 7(x,?) then
arises by inclusion of the w ;¢ term in the cosine of (1.6).

The fact that periodic Fourier series solutions (1.6) to
the linearized KdV equation (1.5) can be easily represent-
ed spectrally as a linear superposition of N sine waves
raises a fundamental question: Can the solutions to
periodic KdV (1.1) be represented in terms of N cnoidal
waves (1.2) using a nonlinear generalization of Fourier
analysis? Section II addresses this issue from a concrete
point of view and provides a simple analytical and nu-
merical scenario for its resolution, i.e., it is shown that
periodic solutions to KdV can be represented as a linear
superposition of cnoidal waves plus their mutual non-
linear interactions. In order to give perspective on these
results, a comparison is given in Sec. III between the
infinite-line Hirota N-soliton solution to the KdV equa-
tion and the O-function solutions of the associated
periodic problem. In Sec. IV motivation is given for a
Fourier interpretation of the ® functions and how they
can be exploited in terms of power spectral analysis. A
rather interesting result, also discussed in this section, is
how the wave numbers, while commensurable in the ordi-
nary Fourier sense, are statistically distributed on a frac-
tal set. This result has important implications on the nu-
merical computation of ® functions, i.e., why they are so
difficult to compute. Finally, in Sec. V a number of phys-
ical applications of ® functions are considered, including
the numerical computation of N-degree-of-freedom solu-
tions of the KdV equation, stochastic solutions of the
equation, and the analysis of ocean surface wave data.
The conclusions are provided in Sec. VI.

II. ®-FUNCTION SOLUTIONS
OF THE KdV EQUATION

While (1.6) solves the linearized KdV equation (1.5) for
periodic boundary conditions, the periodic KdV equation
itself (1.1) is nonlinear and hence requires considerable
analysis to obtain the analogous nonlinear generalization
of Fourier series [10—-12]. The KdV equation has rather
general periodic solutions that may be written in terms of
the ®-function representation of the inverse scattering
transform

82
kn(x,t)ZZa—lenG)N(nl,‘nz,. . .,7]N) ’ 2.1)

where the N-dimensional ®-function ® is given by
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0

,771v)= 2

My=—=oM, ® My=—e

I|| Mg
™M

On(N,M - - -

A spectral solution (2.1) and (2.2) of the KdV equation
has N degrees of freedom and ®-function phases given by

n=k;x—wit+¢;, 1Sj=N. 2.3)

Here the kj are the wave numbers, the w; are the fre-
quencies, and the ¢; are the phases. The interaction (or
period) matrix B = { B;;} contains the amplitudes of the N
degrees of freedom on the diagonal terms; the off-
diagonal terms determine the nonlinear interactions
among the degrees of freedom. The parameters in this
formulation k;, ®;, ¢;, and B;; are computable from the
Floquet spectrum of the associated Schrodinger eigenval-
ue problem (the spectral equation for the KdV equation)
and from the Jacobian transformation of algebraic
geometry, which linearizes the hyperelliptic function rep-
resentation of the flow [10-16]; analytical and numerical
determination of these parameters are discussed in detail
elsewhere (see [36] and references cited therein) and
briefly in the Appendix.

A major focus in the present paper is to address the
following inquiry: Are the ® functions (2.2) physically
useful for the study of nonlinear wave motions? While
the answer is in the affirmative, the actual analytical and
numerical exploitation of the approach has not been easy
[10-21,40,41]. A number of directions are motivated
here for applying ® functions to physical problems as dis-
cussed in detail below. As a consequence, a major effort
to better understand certain properties of ® functions has
also been made.

To this end, in what follows, the notation in (2.1)—(2.3)
is changed to vector form, i.e., the ® phases are written

n=kx —ot+¢=(n1,7...,M5) (2.4)

where the wave numbers, the frequencies, and the con-
stant phases are given by

k=(ky,kyy ..., ky),
O0=(w,0y ...,0x) , (2.5)
6=(dp 05 ..., bN) .
Note further that
M-p=(M-k)x —(M-w)t+M-¢ ,
M=(M, My, My) . 26)

M

iM- T.p. iM- T.g. iM- T.p.
®N<n)=2etM 7+(1/2)M QM+ [zetM n+(1/2)M ﬂM_zelM n+(1/2)M"-D-M
M

M

N N
exp (i 3, Mjnj+% '21 leiBiij
i=1j=

1107

N
(2.2)
j=1

[

The integer entries (M,,M,,...,My) in the vector M
are the summation indices in Eq. (2.2). It is then con-
venient to write (2.2) in the vector form

@N(n)=zeiM~1,+(1/2)MT-§-M , 2.7)
M
where the superscript T denotes transposition.

A cautionary note is worth making with regard to the
notation used herein. In particular the symbol M has
been used in a number of contexts in the present paper.
Note that the simple scalar M indicates the truncation
limit in the ®@-function summation as discussed with re-
gard to Theorem 3 below. Values of the variable M with
a subscript, M ;> are the components of the vector M,
which is bold; this has been defined in (2.6) and will be ex-
ploited in Theorems 1 and 2 below.

In the notation of (2.7) it is straightforward to address
the following theorem.

Theorem 1: Cnoidal Wave Theorem. The ®-function
solution to the KdV equation (2.1), (2.2) can be written in
the following form [u (x,)=An(x,1)]:

2

u (x,t)=2~ai—21n®N(1])=ucn(71)+uim('n) (2.8)
The subscript “cn” on the right-hand side of the equation
refers to contributions to the solution that are a linear su-
perposition of cnoidal waves. The subscript “int” on the
right-hand side of Eq. (2.8) refers to nonlinear interac-
tions among the cnoidal waves. These terms have the fol-
lowing specific forms:

82
ucn(n)=2gx—zln6(n) ,

2 (2.9)
9 F(7,C)
i =2 In{1+
umt(") ax2 n G('r,)
and
F(n,C)=3, CeM+(172MT-D-M ’
M
C=[e!/2MIOM_y], (2.10)

The interaction matrix B=D +0O has diagonal D and
off-diagonal O parts.

Proof. Theorem 1 follows naturally from Egs. (2.1) and
(2.2). Use B=D+Qin (2.7) and write

M

i T.p. T.g. iM- T.p.
@N(")=2e1M.n+(l/2)M D M+ [2 [e(l/Z)M 1] M_l]elM n+(1/2)M°-D M] ,
M

z[e(l/Z)MT-Q-M_ 1 ]eiM-n+(1/2)MT'2-M

@N(n)zzeiM~n+(l/2)MT-Q-M 1+ M
M

M

> eiM~1,+(1/2)MT-l_)~M
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It therefore follows that the solution to the KdV equation can then be written

2 .
u(x,t)=2%1n > e’M"’“I/Z)MT"—)'M+uint('r]) ,
M
where

2

(2.11)

> [e(l/Z)MT-Q-M_ 1 ]eiM-'q+(I/2)MT-l_)-M
M

_, 0
ui,,t(x,t)—Zalen 1+ zeiM~n+(1/2)MT'Q'M

M

Simple definitions then lead to the form given in Theorem 1.

(2.12)

To render the cnoidal wave interpretation of the first term on the right-hand side of (2.8) or (2.11) note that the func-

tion G(n) has the product form

N

G(n)=2eiM~n+(l/2)MT-Q'M= H Gn(Mnnn) (213)

M n=1
such that G, is the classical function known as ®; [38,39], which has the following series representation:
o . 2
G )= S o MnTln 1/ DMD,,, (2.14)
Mn =—o0

To prove (2.13) and (2.14) rewrite (2.2) in the form

On(Mss -+ ->y)= 3, expliMn;+1MiB ;]

M=—w
X 3 expliMyn,+1M3By]
M2 =—o00
© . ) N N
X ¥ expliMyny+3MyByylexp (13 3 M;B;M,;
My=—w j=lk=1
k+j
[

Note that in this form the right-hand exponential is over ) _ 37%4, s
the off-diagonal terms of the period matrix. Then, when m, K(m, )= 2k2h3 =4m°U, ,
the period matrix is taken to be diagonal, as in the " 2.17)

present case, the right-hand exponential is just 1 and the
above expression reduces to (2.13) and (2.14).
The logarithm of (2.14), setting m =M,,, is given by

o gl cos(mm,)
InG,(n,)=Iny —2 ,
o m2=1 l_q'%m m

(1/2)D,, (2.15)
=e

n ’

where 7, =k,x —w,t+¢, and it then follows that

32
u,,(x,t)=25x—21nG,,(x,q,,)

=2u,cnX([K(m,)/7][k,(x —C,t)+¢,1;m,) .
(2.16)

This is the cnoidal wave (Jacobian elliptic function) solu-
tion (1.2) of the KdV equation (1.1); the wave has ampli-
tude u,. The moduli m, and phase speeds C, are given
by

C,=co{1+24,/h —2k2h’K*m,)/37*)

for A, =u,/A. Here K (m) is the elliptic integral [38,39]
and U, =34, /8k2h?> is the Ursell number [24]. Conse-
quently, from (2.8), (2.10), and (2.11), one finds

U (X,1)

ncn(x’t)z A,

N
=2 3 A,cn*([K(m,)/m][k,(x —C,t)

n=1

+¢,1m,) . (2.18)
Note that (2.18) is not a solution to the KdV equation
since nonlinear interactions have been excluded. Only by
adding the nonlinear interaction term (2.12) to (2.18) do
we obtain an exact solution to the KdV equation as given
by (2.8), or (2.11) and (2.12). Generally speaking, the in-
teraction term u;,, cannot generally be thought of as a
small perturbation to the cnoidal waves u,, particularly
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when the spectrum contains solitons [36]. On the other
hand, when the off-diagonal terms O are small

T.o.
eW/2IMMOM_ | L IMT.0.M .

Then one can think of Theorem 1 as representing the rel-
atively weak interactions among N small-amplitude
cnoidal waves. This completes the discussion of Theorem
1.

For applications of the periodic inverse scattering
transform to the analysis of theoretical and experimental
problems it is often convenient to give an interpretation
of the formalism in terms of a nonlinear spectrum in the
®-function representation. This approach differs from
the more familiar nonlinear spectral interpretation in
terms of the hyperelliptic function representation, which
has been documented in detail elsewhere (see Refs.
[29-35] and references cited therein). The nonlinear
Fourier spectrum in the ®-function representation con-
sists of the amplitudes of the cnoidal waves at each wave
number k,; the spectral amplitudes a, ~4q,k?2 are relat-
ed to the diagonal terms in the interaction matrix B
through g, =exp[B,, /2] [see (2.12) and (2.13)]. As stat-
ed above, the off-diagonal terms Q in the B matrix deter-
mine the nonlinear interactions among the cnoidal-wave
spectral components. Thus the B, term (i7j) deter-
mines the interaction between the ith and the jth cnoidal
waves in the spectrum.

Before continuing with the discussion of the theoretical
results on the periodic solution to the KdV equation, it is
useful to contrast Theorem 1 with the analogous theoreti-
cal formulation on the infinite line — o0 <x < =, i.e., the
Hirota N-soliton solution.

III. COMPARISON OF THE PERIODIC
®-FUNCTION FORMULATION
WITH THE HIROTA N-SOLITON SOLUTION

The N-soliton solution to the KdV equation on the
infinite x axis ( — o <x < ) is given by (see [1] and
references cited therein).

2
kn(x,t)=25i—21nFN(m,172, cesMy), —o<x<o,

(3.1)

where

1109
FN(711’172, L ’"N)
11 1 N
=3 3 - X exp| XV
v=0v,=0 vy =0 j=1
N N
+1 3 S vidyv; | -
i=1j=1
(3.2)
The N phases are written
n;=kx—kjt+¢;, 1<j<N (3.3)
and the 4 matrix has the simple form
o= | KT ’ (3.4)
A '

Here the k; are the soliton wave numbers that are related
to the individual soliton amplitudes 7,; by 7,; =2k?/A.
The N-soliton solution (3.1)-(3.4) has many obvious simi-
larities with the N-cnoidal wave periodic solution (2.1)—
(2.3) to the KdV equation, as can be seen by inspection.
A number of fundamental differences in the two formula-
tions are, however, immediately obvious. First, in the
Hirota formulation the summation of the exponential
functions is over the interval 0=v; =1, while in the ®
function the sum is over — o <M f < . Second, the sin-
gle sum over the phases 7; in the argument of the ex-
ponential of the Hirota formulation (3.2) is real; in the ®
function (2.2) it is imaginary. Third, it is clear that the
parameters in the Hirota formulas, k i ¢ s A ij» are not the
same as in the ®@-function representation (see the appen-
dix for a discussion of the parameters in the periodic
problem). It is not hard to show that the N-soliton limit
of the ®-function formulation (2.1)-(2.3) is given by the
Hirota formulas (3.1)-(3.4); this is accomplished by intro-
ducing a Poisson sum formula (see Refs. [17-21] for a de-
tailed discussion of the case for N =2).

In Sec. II the solutions to the KdV equation were
separated into a linear superposition of cnoidal waves
plus nonlinear interactions. Can this same idea be ex-
ploited for the N-soliton solution on the infinite line?
Formally, the answer is of course ‘“yes,” but as we shall
see, the results are to be interpreted in a somewhat
different way, i.e., as the N-soliton limit of periodic
theory. To see how this occurs I now rewrite the Hirota
formulation. First separate the 4 matrix into diagonal
and off-diagonal parts 4 =D + O and then write (3.2) in
the obvious vector notation

(2wT-0wv_ vp+(1/2vT-Dv
> [e 1]e

Fy(q)=3 evnt(1/2v v 14 2
v
v

where the integers v; range over (0,1). It then follows that

2
u (x,t)=2_ai_21n s ev.n+(1/2)vT.g.v+uim(,’l) ,
v

> ev-n+(1/2)vT-2~v

’ (3.5)

(3.6)
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where

2
v

a2vl-owv_ 11, va+172wT-Dy
Sle 1le

_ . 0
Uin (X,2)=2 alen 1+ Ee”’“’mv”—""

v

In analogy with Theorem 1, Egs. (3.6) and (3.7) may be
interpreted as a linear superposition of solitons plus non-
linear interactions.

To illustrate this idea I implement (3.6) and (3.7) nu-
merically and show in Fig. 1 a two-soliton solution for
which the role of phase shifting is easily observable.
Then in Fig. 2 I show the linear superposition of the two
solitons, i.e., the effects of nonlinear interactions u;,, in
(3.7) have been excluded. Finally, in Fig. 3 the nonlinear
interactions u;,, are shown separately. Note that the
nonlinear interaction term consists simply of a negative
contribution that removes each soliton from its incorrect

I
0 100 200 300 400 500 600

X

FIG. 1. Hirota two-soliton solution of the KdV equation as
computed by Eqgs. (3.6) and (3.7). (a) Space-time evolution. (b)
Contours of the space-time evolution. The phase shifts of the
solitons, due to the collision process, are clearly evident.

(3.7

[
position and then adds it back in after it has been phase
shifted. Thus the idea of linearly superposed solitons plus
an interaction term simply provides an alternative per-
spective to classical phase shifting for the physical pic-
ture of soliton collisions. The two points of view are en-
tirely equivalent. It is clear that the interactions u;, can
never be viewed as small with respect to the linear super-
position of the solitons. Nevertheless, as discussed in
more detail below, Theorem 1 remains valid and useful
even when the interactions are large.

This perspective suggests, in the interest of physical

! L ! L
0 100 200 300 400 500 600

X

FIG. 2. Linear superposition of the two-soliton solution of
Fig. 1. (a) Space-time evolution. (b) Contours of the space-time
evolution. Since nonlinear interactions have been excluded,
there is no phase shifting of the solitons during their collision.
This example has been computed using Egs. (3.6) and (3.7),
where the nonlinear interaction term u;,, has been set to zero.
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(b)

I 1 i
0 100 200 300 400 500 600

X

FIG. 3. Interaction contribution of the two-soliton solution
of Fig. 1. This example has been computed using Eq. (3.7) to
determine the nonlinear interaction term u;, as a function of
space and time. The interaction term u;, shown in this figure
plus the superposition of the two solitons given in Fig. 2 con-
struct the two-soliton solution of the KdV equation shown in
Fig. 1.

clarity, that one might also first zero the phase shifts be-
fore the two-soliton collision, as is normally done in the
literature (see [1] and references cited therein). Then
after the collision one observes the resultant theoretically
predicted relative phase shifts of the two solitons. How-
ever, I have not done this in the present example. Instead
the numerical solution as computed by (3.1) and (3.2) is
given without modification. Surprisingly, the nonlinear
interaction term u;,, takes on a life of its own, as shown
in Fig. 3, and becomes a separate entity in its own right.
Indeed the contribution u;;, might loosely be referred to
as “gluons” [see Figs. 3(a) and 3(b)], which serve as “in-
termediary particles” participating in the interaction pro-
cess both before and after the collision of the solitons.
This latter interpretation, together with the associated
physical perspective, are of course common in elementary
particle physics.

In the periodic problem the situation is perhaps even
more intriguing than that just described for the infinite

m = 0.98 Solitary Wave
) = N 4

Stokes Wave

Nonlinear Interactions

0.0020 t *
0.0015
_Qg) 0.0010
& 0.0005

Solution to the KdV Equation

Ampl
(e}

-0.0005 -
-0.0010 - J
—0.00150

50 100 150 200 250 300
Space - x

FIG. 4. Four-degree-of-freedom solution to the KdV equa-
tion. In (a)—(d) are the four cnoidal waves in the inverse scatter-
ing transform spectrum. The modulus of each component is
shown in its respective panel. In (e) is the contribution due to
nonlinear interactions. The four-degree-of-freedom solution to
the KdV equation is given in (f) and corresponds to the linear
superposition of the four cnoidal waves (a)—(d) plus nonlinear
interactions (e), i.e., the sum of the curves (a)—(e).

line. This is shown in Fig. 4 where an example is given
of four cnoidal waves plus mutual nonlinear interactions.
This figure emphasizes the results of Theorem 1. In the
periodic problem we do not find a localized nonlinear in-
teraction term as found in the infinite-line problem (Fig.
3). In fact, one finds a field of nonlinear interactions, dis-
tributed over the entire periodic domain. This can be
seen in Figs. 5-7, where the space-time evolution of the
four-degree-of-freedom system is shown. Figure 35
presents the complete nonlinear evolution of the four-
cnoidal-wave solution to the KdV equation as given by
formulas (2.11) and (2.12). Figure 6 instead shows the
space-time evolution of the linear superposition of the
cnoidal waves as computed by (2.18). Finally, in Fig. 7
the evolution of the nonlinear interaction term (2.12) u;,,
is given in the absence of other physical effects. The
linear superposition of the cnoidal waves (Fig. 6) plus the
interactions (Fig. 7) gives the solution to the KdV equa-
tion shown in Fig. 5. The periodic solution to the KdV
equation may be thought of as a kind of ergodic “soup”
in which the individual “particle” components (cnoidal
waves) are continually mixing with one another as they
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Four Degree of Freedom Solution of KdV

FIG. 5. Space-time evolution of the four-degree-of-freedom
solution to the KdV equation shown in Fig. 4. The wave ampli-
tudes are shown in (a), the associated contours in (b). This ex-
ample has been computed using Egs. (2.11) and (2.12).

evolve and nonlinearly interact through ‘““intermediaries”
within the periodic box. All component interactions are
pairwise, of course, but the infinite-line, ‘‘time-asymptotic
state” in which rank-ordered solitons appear as t— o
can never occur. Thus it is easy to physically view the
present problem as a linear superposition of cnoidal
waves propagating and interacting with each other in a
sea of nonlinear intermediaries. By eye of course the
nonlinear interaction terms are not necessarily
identifiable with any single soliton-soliton (or cnoidal
wave—cnoidal wave) interaction (since the effect of phase
shifting may carry nonlinear interaction corrections far
from the linearly superposed waves). Note that in the
present case the interaction terms have a rms amplitude
of about one-third of the rms amplitude of the linear su-
perposition of the cnoidal waves (compare Figs. 6 and 7).
Since the cnoidal waves generally range over a continuum
of behavior for which their moduli can take on values be-
tween O and 1, one finds that solitons, Stokes waves, sine
waves, etc., all may occur in the inverse scattering trans-
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Linear Superposition of Cnoidal Waves

FIG. 6. Space-time evolution of the linear superposition of
the four cnoidal waves shown in Figs. 4(a)-4(d). This example
has been computed using Eq. (2.11), where the interaction term
u;: has been set to zero. The wave amplitudes are shown in (a)
and the contours in (b).

form (IST) spectrum. This suggests that the usual clear
distinction between the solitons and the radiation solu-
tions of the infinite-line problem may be blurred in the
periodic problem. The richness of the solutions of the
periodic problem is further characterized by the explicit
and separate representation for the nonlinear interactions
as given by (2.12).

In even more complex solutions, where hundreds or
even thousands of degrees of freedom occur (e.g., in sto-
chastic processes, statistical mechanics, or ocean waves),
the idea of a ‘“background” of interactions is even more
appealing, as will be seen in Sec. V. The perspective just
discussed constitutes a first step toward a statistical
mechanical formulation of the KdV equation [22,27].

Another important issue with regard to the concept of
soliton phase shifting relates to the time series analysis of
nonlinear wave trains, an example of which is also dis-
cussed in Sec. V. Given the space-time evolution of a
chosen wave train, one can follow the solitons by simply
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Nonlinear Interaction Terms

100 150 200
x

FIG. 7. Space-time evolution of the nonlinear interactions
shown in Fig. 4(e). Here the wave amplitude consists only of
the nonlinear interaction contribution u;, as computed using
Eq. (2.12). The wave amplitudes are shown in (a) and the con-
tours in (b).

assuming that, at a particular time ¢t =¢,, the phases are
identically zero, i.e., the solitons that are observable in
the measured wave train are exactly where they are seen,
not where they might be phase shifted relative to t = — «
or o. The details of this simplifying procedure, which
we refer to as “phase renormalization,” are deferred to a
later paper on time series analysis.

IV. LINEAR FOURIER AND STOCHASTIC
REPRESENTATIONS FOR THE KDV EQUATION

The O-function representation can, surprisingly, be
written in terms of a linear Fourier series. This idea is
addressed in the following theorem.

Theorem 2: Fourier theorem. The ® function (2.2) [see
also (2.7)] can be written in the form

Op(x,1)= i Clei(le—.().It+<I>,) ,
=1

4.1a
(! /2M[-B-M, (4.12)

Cl:

’

where [ is an ordering parameter associated with each
vector M=M,; in the ® sum. Furthermore

KI:MI'k N Q[:MI'C() N ¢I=MI.¢ . (4.1b)

In these variables the inverse scattering transform in the
®-function formulation given by (4.1) resembles linear
Fourier analysis.

Proof. The ® function (2.7) in vector form is easily
written

Opn(x,)=3 Cpe™, Cy=e/2MEM (49
M

By associating the integer / with each vector M and using
(2.6) one arrives at Theorem 2. The resemblance of (4.1)
to ordinary, linear Fourier analysis is, however, some-
what superficial because the commensurable wave num-
bers, K, are not rank ordered with the integers as in
linear Fourier analysis. Furthermore, the convergence
properties of the series (4.1a) are quite different from
those for linear Fourier analysis. The practical im-
plementation of (4.1a) requires the numerical determina-
tion of large numbers of terms, even hundreds of orders
of magnitude larger than for ordinary Fourier series.
These ideas will be addressed in detail below in Theorem
3 and related discussions.

A. Power spectral analysis

Power spectral analysis arises from the boundary value
problem for the “time KdV” (TKdV) equation [24] and
its associated boundary solution ® (0, ),

i(Qt—o))

On(x=0,t)=3 Cje 4.3)
1

This expression has the form of a linear Fourier time
series. Each term in the series corresponds to a particu-
lar selection of the vector M, each of which generates
particular values of the scalar quantities C; (the IST
Fourier coefficients), ; (the frequencies), and ®, (the
phases). Should the phases ®; be uniformly distributed
random numbers on the interval (0,2,7), then the
coefficients would be expressed by (see [42] and references
cited therein)

C,=V2Pg(Q,)AQ , (4.4a)

where the power spectrum of the ® function has the form

Po(Q)=e!/4MTEM (4.4b)
Evaluation of (4.4) must be made at the appropriate set of
frequencies (1;, as discussed in detail below. An impor-
tant ingredient missing in the formulation (4.4) is that the
phases ®; are generally not random numbers for the
KdV equation, i.e., phase locking is the natural way to
construct nonlinear wave forms such as solitons and
Stokes waves in the inverse scattering transform (2.1) and
(2.2). This leads to technical difficulties in the derivation
of the power spectrum of the solutions to the TKdV
equation
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u(0 t)z—z—il'z—ln(’:‘) (0,1) (4.5)
’ 2 drr N )

and results in necessary modifications to (4.4). These de-
tails are beyond the scope of the present paper and are
therefore discussed elsewhere [36]. Nevertheless, on the
basis of (4.3), together with (4.5), and assuming random
phases for the cnoidal waves, it is not hard to show that a
large class of solutions of the TKdV equation are station-
ary and ergodic.

B. Statistical properties of the wave numbers

While the form of the Fourier series given above (4.1)
and (4.3) suggests that all subsequent considerations are
simple, this turns out not to be the case due to mathemat-
ical difficulties, some of which I now discuss in some de-
tail. This problem provides insight into the practical
computation of ® functions [36]. In the ordinary linear
Fourier series of a periodic function the wave numbers
are commensurable, i.e., recall that k=[k,k,,...,ky],
where one has the well-known result
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k,=nAk=2T"

,, 1<n=N
for L the spatial period of a wave train; Ak =27 /L is the
lowest wave number in the spectrum, which has N de-
grees of freedom.

How then do the wave numbers for the periodic KdV
equation K; behave for the class of ® functions given by
(4.1)? Clearly their formulation is different from those for
the linear Fourier transform, i.e.,

K,=M;k=[M! M), ..., ML]-[1,2,...,N]Ak
N
=Ak 3 nM] . 4.6)
n=1
This result then leads to the following theorem.
Theorem 3: Fractal index theorem. The ®-function

wave numbers K; for the KdV equation are integer multi-
ples I; of Ak,

N
K,=LAk , I,=3 nM] 4.7

n=1
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FIG. 8. Fractal commensurable wave numbers for N=35 degrees of freedom. The wave numbers have been computed for
M =3 (—3=M, <3); there are four fractal cascades of seven levels [(2M +1)=7] each. The curve is space filling and has fractal di-
mension D—2 as M,N— . (b) is an exploded view of the region bracketed in (a). Note that (a) and (b) resemble each other geome-
trically, a result of the self-similar fractal cascading of the function. In (c) the bracketed region of (b) is exploded. The limit of the
fractal scaling becomes easier to see as smaller scales are reached. Finally, the bracketed region in (c) is expanded and shown in (d).
Here the scaling limit is clear and depends on the smallest wave number increment Ak.
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and are therefore commensurable, possibly duplicated,
and not ordered with the integers. Partial ® sums over
the individual indices M, may be taken over arbitrary
limits ( —M, M) rather than (— o, o). Then the number
of terms in the theta sum (2.2) is (2M +1)¥Y+ N +2 and
the number of wave numbers in the spectrum is given by
Npax=[(2M +1)V+1]. The integer I, is bounded,
—(J —1)=1I,=J, where
N
J=M I n=IMN(N+1). (4.8)

n=1

N ..x also gives the number of terms summed in the in-
teraction contribution u,;, in the series (2.12). It then fol-
lows that the integer function I; is a space filling fractal
function of dimension 2 as M, N — o [36].

Discussion of Theorem 3. Figures 8 and 9 present
graphs of I, as given by Eq. (4.7). Figure 8(a) is an exam-
ple of a graph of the integer commensurable wave num-
bers I; =K, /Ak as a function of the ordering parameter /,
1=<I=<N,_.. For this particular case the summation in
the ® function is made over —3 <M =<3 for a system
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with N=35 degrees of freedom, so that there are
Npax =M +1)¥+1=7°41=16808 wave numbers in
the ® function; J=MN (N +1)/2=45 so that the com-
mensurable wave number range has the interval
—44<],<45. The fractal nature of the curve K; vs [ is
suggested by the sequence of panels in Fig. 8. In panels
(a)—(d) of the figure one can see the self-similar fractal
behavior at successively smaller scales. Note that the
fractal scaling (which is after all only approximate due to
the finite values of M, N used in the present example) can
continue downward only to the smallest possible wave
number Ak.

Figure 9 gives an additional example of fractal scaling
for which N =5 and —5=<M =<5. Here too the fractal
structure, down to the scale of a single wave number in-
crement Ak, can be seen. These examples illustrate how
the number of fractal cascades depends upon the parame-
ter 2M +1 [count seven in Fig. 8(a) and 11 in Fig. 9(a)].
The depth of the cascade depends upon the number of de-
grees of freedom N —1. In the present cases N —1=4;
therefore, in large-degree-of-freedom systems the number
of cascades is proportional to N. Hence the integer func-
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FIG. 9. Fractal commensurable wave numbers for N =5 degrees of freedom for M =5 ( —5=< M, <5); there are four fractal cas-
cades of eleven levels [(2M +1)=11] each. The curve is space filling and has fractal dimension D —2 as M,N — . (b) is an explod-
ed view of the region bracketed in (a). Here (a) and (b) resemble each other geometrically, a result of the fractal cascading of the
function. In (c) the bracketed region of (b) is exploded. Finally, the bracketed region in (c) is expanded and shown in (d). Here,
again, the scaling limit is clear and depends on the smallest computed wave number increment Ak.
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tion I; can span several decades when N consists of
several thousands of degrees of freedom. Of course, as
M,N — o the function I; cascades as infinite number of
times over an infinite number of levels.

These surprising results should be contrasted with the
usual case for the linear Fourier spectrum that has wave
numbers on the interval —5=<1I; <5, such that there are
only 11 Fourier components. Clearly the periodic inverse
scattering transform, which for the example of Fig. 9 has
(2M +1)¥+1=11°+1=161052 terms, is much more
rich and complex than its linear Fourier counterpart.

It is not hard to see how the fractal dimension D =2
(Theorem 3) arises in the present problem. Simply by sys-
tematically letting M increase from M =3 to 5 one can
see the space filling nature of the function I;, as illustrat-
ed in the above numerical examples [e.g., Fig. 9(a) fills a
blackened region of space larger than Fig. 8(a)]. Stan-
dard yardstick or scaling tests verify this conjecture;
analytical and multifractal results are reported elsewhere
[36].

Are there any physical manifestations of fractality in
nonlinear wave motion? Evidently so, because in a recent
paper by Huang et al. [43] the phases of the Hilbert
transform of oceanic field data were found to be fractal.
More recently Onorato and Osborne [44] found the
wavelet transform phases of Adriatic Sea surface waves
to be fractal. In light of the results developed here, fur-
ther exploration of the fascinating problem of fractal
properties of wave trains from the point of view of the in-
verse scattering transform is warranted.

Are there any additional consequences of fractality in
the ®-function representation for the present problem?
The fractal properties of the integer function I; have a
substantial impact on the numerical computation of ®-
function solutions of the KdV equation via (2.1) and (2.2).
This is because the number of complex exponentials that
must be computed in the ® function (2.2) is ~(2M +1)%,
typically an enormous number. For example, for M =10,
N =1000 (corresponding to a 2000-point time series) the
number is ~ 1032, Modern workstations run at about
107 floating point operations per second. The approxi-
mate number of terms computable in the lifetime of the
universe is therefore ~10%*, so that ~10'*% universal
lifetimes are required for the complete ©-function calcu-
lating. Even if M is only 1, for N =1000, we get ~ 10*"
operations or 10*>3 universal lifetimes. These estimates
alone suggest rather emphatically that ® functions are
not very useful for physical applications. It is fair to say
that the enormous amounts of computer time required,
based upon these simple estimates, have discouraged
large N applications of ® functions in soliton systems for
over 20 years.

The situation is not completely hopeless, however, be-
cause the practical calculation of the ® functions has re-
cently been substantially improved using a fast Fourier
algorithm, whose details are documented elsewhere [36]
[fast inverse scattering transform (FIST)]. A major goal
of this paper is to discuss present and future applications
of this numerical approach to problems in nonlinear wave
physics. I now address examples that illustrate why ®
functions are useful physical tools.
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V. ®-FUNCTION SOLUTIONS
TO THE KdV EQUATION:
EXAMPLES FROM THEORETICAL
AND EXPERIMENTAL PHYSICS

How can ® functions be useful for doing problems in
wave physics? The first and most obvious way is as a tool
for computing the space-time evolution of complicated
solutions of the KdV equation. These include fully sto-
chastic solutions in the sense discussed by Osborne [22].
An example is given below. Another application is as a
numerical tool for the time series analysis of measured
wave data. Signal processing of this type includes non-
linear filtering, an example of which is also given below.
A third use is the study of coherent structures in the
KdV equation. Recently Osborne and Petti [23,24]
discovered experimentally that coherent structures of the
KdV equation can be interpreted, for the data set investi-
gated by them, in terms of interacting cnoidal waves with
moduli in the range ~0.7-0.9. These ideas can be stud-
ied naturally in the ® formalism as discussed herein. One
should think of the ®-function approach as extending
and complimenting the work already done by the present
author and co-workers on the hyperelliptic-function rep-
resentation [22-27,29-35]. A number of examples are
now given for application of ® functions to problems in
nonlinear wave propagation.

A. Four-degree-of-freedom solution
to the KdV equation

Further discussion of Theorem 1 is in order. Illustrat-
ed in Fig. 4 is a simple four-degree-of-freedom solution to
the KdV equation. Figures 4(a)-4(d) give the spectral
component waves; these consist of cnoidal waves with
moduli M =0.98, 0.88, 0.70, and 0.37. Thus one has
waves corresponding roughly to a soliton, two Stokes
waves, and a sine wave, respectively. The nonlinear in-
teraction term is shown in Fig. 4(e). The linear summa-
tion of the four cnoidal waves plus nonlinear interactions
is given in Fig. 4(f); this is a numerically constructed solu-
tion to the KdV equation, accurate to about 12 decimal
places (for particular numerical details see Ref. [36]). A
discussion of the detailed relationship of the numerical
O-function solution to its associated hyperelliptic-
function representation is also given in [36].

B. Stochastic solutions to the KdV equation

The numerical computation of the space-time evolu-
tion of solutions of the periodic KdV equation has recent-
ly been addressed by Osborne [34] in the hyperelliptic-
function representation. To set the stage for numerical
computation of stochastic motions it is only necessary to
note that a prototypical linear stochastic process is given
by the ordinary Fourier series (1.6) provided the
coefficients are given by the formula

C,=V2P(f,)Af ,

where P (f, ) is the power spectrum and the phases ¢, are
assumed to be uniformly distributed random numbers on
(0,277).
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Can a nonlinear stochastic process be defined based
upon inverse scattering theory? The answer is in the
affirmative; previous results have focused on the
hyperelliptic-function representation [22]. In the latter
nonlinear problem the IST open-band widths are the con-
stants of the motion (these are related to the amplitudes
of the cnoidal waves through algebraic geometric loop in-
tegrals; see the Appendix) and, in analogy with the linear
problem, the hyperelliptic phases are chosen as uniformly
distributed random numbers on the interval (0,2w).
Solutions to the periodic KdV equation of this type are
fully consistent with classical stochastic representations
using the linear Fourier transform (see [42] and refer-
ences cited therein). In the present paper I extend the no-
tion of nonlinear stochastic solutions of the KdV equa-
tions by implementing the ®-function representation.
Here the cnoidal wave phases are taken to be uniformly
distributed random numbers on (0,27).

To this end the space-time evolution of a stochastic
128-degree-of-freedom solution to the KdV equation is
given in Fig. 10. As with Osborne [22] the spectrum has
been chosen to be a power law ~ f ~% a=2.0. The spec-
trum contains 9 solitons (m >0.99) and 119 radiation

40

35

30

N25

120 ¢

150 250

FIG. 10. (a) Space-time diagram of a 128-degree-of-freedom
stochastic solution (power spectrum ~ f~ ¢, a=2.0) to the KdV
equation as computed in the ®@-function representation. The ®
phases @, have been selected to be uniformly distributed ran-
dom numbers on the interval (0,27). The spectrum has 9 soli-
tons and 119 radiation components. (b) Contour plot of the
space-time evolution.
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FIG. 11. Stochastic solution to the KdV equation from Fig.
10 at =0 and 40. No solitons are visible in the initial condi-
tions (dotted line), while at the later time the solitons are easily
visible (solid line). This result illustrates how purely stochastic
solutions to the KdV equation can have space-time dynamics
consisting of solitons in a random sea of radiation. These re-
sults are computed by the FIST algorithm in Ref. [36].

modes (m <0.5). The cnoidal wave phases have been
chosen to be uniformly distributed random numbers on
the interval (0,27). The FIST algorithm [36] has been
used to perform the calculation; the associated finite-gap
spectrum is also discussed in [36]. In Fig. 10 I graph this
solution of the KdV equation at the time t=0 and then
evolve it forward in time using the fast ®-function formu-
lation. The evolution has been halted at a moment when
the solitons in the spectrum are widely separated in phys-
ical space (t =40, Fig. 11), exactly at the same point com-
puted by Osborne in the hyperelliptic-function represen-
tation [22]. It is clear that stochastic solutions of this
type may be interpreted in terms of randomly interacting
solitons in a random sea of radiation. In the present ap-
plication the ®@-function representation is much faster for
numerical computations than its close cousin, the
hyperelliptic-function representation; furthermore, ©®
functions do not exhibit the numerical pathologies that
occur in the computation of the hyperelliptic functions
[34]. It should be clear that fast computation of ®-
function solutions of this type opens the way to fast non-
linear power spectral analysis for computational and time
series analysis applications. An important property of
the space-time simulations of this 128-degree-of-freedom
solution is the stationarity and the ergodicity of the solu-
tions; proof of this assertion, based upon certain physical
considerations, is given elsewhere [36].

C. Analysis of oceanic wave trains

Unidirectional oceanic wave trains in shallow water
have recently been analyzed using the inverse scattering
transform in the hyperelliptic-function representation
[25,26]. Here I give an analysis of an oceanic wave train
using the ®@-function representation. The measured wave
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FIG. 12. ®-function inverse scattering transform analysis of
surface wave data measured in the Adriatic Sea. The measured
wave train is shown in (a). In (b) is the inverse scattering trans-
form of the data given in (a); the solid jagged curve represents
the oscillatory modes in the spectral peak and the vertical ar-
rows denote the “infinite-line” solitons. Each spectral ampli-
tude corresponds to the amplitude of its associated cnoidal
wave. The values of the spectral modulus m for each cnoidal
wave component are also shown. Values of m ~1 indicate the
presence of solitons (to the left, at low frequency) or soliton
trains (to the right, at intermediate frequency).

train has been obtained in the Adriatic Sea and is shown
in Fig. 12(a), while the scattering transform ®-function
spectrum is graphed in Fig. 12(b). The wave train has
2000 points and hence the number of degrees of freedom
is N=1000; only 125 degrees of freedom have been
graphed in the present example [Fig. 12(b)]; in the ®-
function representation the spectrum is synonymous with
the amplitudes of the cnoidal waves graphed as a func-
tion of frequency. From the figure it is clear that the
spectrum can be easily divided into well-defined solitons
and a spectral peak near 0.1 Hz. Five solitons are found
in the spectrum; the spectral peak, however, dominates
the motion energetically. Also graphed are the moduli m
of the cnoidal wave components. The fact that the
moduli are near 1 at low frequency provides the soliton
interpretation for the lowest five modes. The moduli then
decrease for somewhat higher frequencies, but increase
again to values near ~1 for intermediate values of the
frequency (coinciding with the spectral peak). The modu-
li generally decrease again for still higher frequency; this

latter decrease is consistent with the well-known lineari-
zation of the KdV equation dynamics at high frequency.
The fact that m ~ 1 at intermediate frequencies implies
that the most energetic part of the spectral peak is inter-
pretable in terms of solitons. This is a surprising fact and
deserves further attention. In the spectral peak it is im-
portant to note that the frequencies are relatively high,
i.e., they behave like w, =2mn /T, where n is the number
of the spectral component, for T the temporal period of
the measured wave train. The region near the peak for
which m ~1 corresponds to n ~50-70 oscillations per
period T. This suggests that the IST components in the
spectral peak might well oscillate much like sine waves,
i.e., they could have a form similar to the rapidly oscillat-
ing function sinw,t. Of course, the components are not
sine waves in this nonlinear case; they are cnoidal waves,
each with its own modulus m. Consequently, each com-
ponent in the spectral peak for which m ~1 is a soliton
train, i.e., it is shaped like a sequence of many solitons (n
of them within the temporal period T), one after the oth-
er, of equal amplitude (see Ref. [15] for a discussion of
this concept). Wave trains of this type are a succession of
equal-amplitude sharp peaks and shallow troughs, each
indistinguishable from a soliton inside a single period
T /n. On the basis of the analysis of the Adriatic Sea
data (Fig. 12) and Theorem 1 we therefore conclude that
the most nonlinear part of the measured spectral peak
(where m ~ 1) consists of a linear superposition of soliton
trains that are nonlinearly interacting with each other.
The interpretation of the peak in terms of soliton trains
or nonlinear oscillatory modes is quite recent and sug-
gests that a detailed and separate study is in order; exten-
sive discussion has therefore been delayed to a future pa-
per. Note, however, that no analog exists for soliton
trains in the spectrum for the infinite-line problem. How-
ever, Ablowitz and Segur [1] have pointed out, based
upon an asymptotic analysis, that the first maximum in
the radiation tail of the infinite-line problem (as t— o)
has a shape that is indistinguishable from a single soliton.
By addressing the spectral peak in terms of the interac-
tion matrix B in the ®-function formulation it is possible
to filter out the peak modes and to directly observe the
infinite-line solitons as shown in Fig. 12(a). This is done
by first selecting the 5X 5 submatrix corresponding to the
soliton part of the spectrum, which resides in the upper
left-hand corner of the B matrix (in the present case B
has been taken to be 125X 125). The soliton train in Fig.
12(a) corresponds to the numerical computation of Egs.
(2.1) and (2.2) using this 5X5 matrix. An advantage of
the ®-function formulation for nonlinear filtering is that
the procedure is quite straightforward, requiring only a
single operation [e.g., evaluation of (2.1) and (2.2) for a
five-degree-of-freedom matrix), while for the
hyperelliptic-function formulation an iterative procedure
is necessary [35]. It goes without saying that this filtering
approach will have a considerable number of applications
in future experimental studies. Spectral decomposition of
the peak of the spectrum in terms of soliton trains is dis-
cussed in detail elsewhere [36].
The results given herein suggest that a nonlinear Adri-
atic Sea wave train has relatively few nonlinear modes,
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i.e., N~5 for the solitons and N~ 10 for the soliton
trains in the spectral peak, for a total of about 15 energet-
ically dominant modes. It is worthwhile noting that the
high-frequency tail of the wave spectrum [which behaves
roughly as a power law such that P(f)~f"*—f 5] is
due mainly to wind-forcing dynamics. Thus, while local
wave dynamics may be governed by a few dominant non-
linear degrees of freedom, the global wind-driven dynam-
ics arise in the relatively small-amplitude power-law tail
of the spectrum, which is neglected in the present
analysis.

It is worth pointing out that the FIST algorithm has
been used in two ways in the present applications: first,
with regard to the time evolution discussed in Figs. 10
and 11, where the algorithm uses computer time propor-
tional to MN* For the data analysis applications as
shown in Fig. 12, the algorithm is proportional to MN?3,
One can ask, How can such a drastic reduction be ob-
tained in view of the results of Theorem 3? The answer is
that while there is a large amount of complexity in the
®-function formulation, much of it is repetitive, or nearly
so, in the fractal scaling process and this leads to recur-
sion relations over the fractal cascades. As discussed
above, the number of cascades, and hence the number of
recursion steps, is finite for finite M and N. Details of
these algorithms are given in Ref. [36].

VI. CONCLUSIONS

The ®-function representation of the inverse scattering
transform for the Korteweg—deVries equation with
periodic boundary conditions has been discussed. It is
shown that the ®-function formulation consists of a
linear superposition of cnoidal waves plus nonlinear in-
teractions. Furthermore, it is shown that while the wave
numbers of the ®-function formulation for the KdV
equation are commensurable, they are also fractal func-
tions of the ordering parameter /. Nonlinear power spec-
tral analysis is a natural consequence of the method and
stochastic solutions of the KdV equation may be readily
computed. To this end a fast Fourier algorithm (FIST)
for computing solutions to the KdV equation is exploited.
Numerical computations of space-time solutions of the
KdV equation, statistical mechanical interpretations of
the motion, stochastic solutions, and broadband spectral
analysis of time series of oceanic data are among the prin-
cipal applications of the methods discussed therein.

One should think of the ®-function approach as ex-
tending and complimenting the work previously done by
the present author and co-workers on the hyperelliptic
function representation [22-27,29-35]. An observation
is that the ®-function approach for describing nonlinear
wave trains in terms of cnoidal waves plus interactions is
particularly useful for systems with relatively many de-
grees of freedom. In this case the interaction terms take
on the form of a background flux of intermediaries,
which mediate cnoidal wave interactions in solutions of
the KdV equation. This perspective for the KdV period-
ic problem is analogous to the phase shift interpretation

of soliton interactions for the infinite-line problem. Evi-
dently, broadband wave train solutions to the KdV equa-
tion consists of two kinds of solitons (corresponding to
spectral regions in which m ~ 1), e.g., (i) infinite-line soli-
tons, which appear once in the spatial period L of the
wave train at low wave numbers, and (ii) soliton wave
trains, which may oscillate many times within the period
L at intermediate wave numbers.

An associated relevant discovery is that there exists a
class of cnoidal wave solutions to the KdV equation such
that each cnoidal wave occurs only once in the period L
and has relatively large modulus m > 0.7 [23,24]; in fact,
there may be more than one such single-period cnoidal
wave in a given wave train. These solutions have been
loosely termed ‘“‘coherent structures” in [23,24]. This
perspective contrasts with previous interpretations of
coherent structures (in integrable wave equations) as be-
ing solitons. The results given by Osborne and Petti
[23,24] thus extend the definition of coherent structures
to include also signal cnoidal waves of large modulus. It
is expected that the O-function approach addressed
herein will shed light on wave trains of this type.

From the author’s point of view the perspective of the
present paper can be summarized as follows. For nearly
two centuries the Fourier transform has been used to ob-
tain information about a wide variety of both linear and
nonlinear wavelike physical systems. Linear Fourier
analysis provides the investigator with the mathematical
tools for obtaining the amplitudes and phases of the par-
ticular sine waves, which when linearly superposed, give
back the wave train under study. Generally speaking, the
Fourier amplitudes and phases are constants of the
motion in linear systems, but have varying space-time dy-
namics in nonlinear systems. There is no doubt that the
linear Fourier approach is among the most used and
well-liked methods in the field of experimental data
analysis. Yet the information content of Fourier analysis
often cannot directly address many of the nonlinear
effects in physical systems. However, with the ®-
function representation of the periodic inverse scattering
transform, one is able to directly project the motion onto
the “true” modes (the cnoidal or the traveling-wave solu-
tions) of a system governed by a particular nonlinear, in-
tegrable wave equation. One can therefore answer some
of the following questions about a measured, nonlinear
wave train using the ®-function representation.

(i) Where are the solitons in the measured wave train?

(ii) Where are the oscillatory modes in the measured
data?

(iii) Where are the coherent structures in the data?

(iv) What is the nonlinear spectral decomposition of
the oscillatory modes in the measured wave train?

(v) Where are the soliton trains that form the most
nonlinear part (m ~ 1) of the oscillatory modes?

(vi) How do the nonlinear components (cnoidal waves)
interact with each other (both pair-wise and globally) in
the measured wave train?

(vii) How does one specifically obtain the contribution
due to nonlinear interactions in the measurements?

Detailed documentation of the above capabilities is given
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in Ref. [36]. Here are some advantages that ® functions
have over the hyperelliptic function.

(i) With ® functions one can directly access, investi-
gate, and extract each soliton in the spectrum through a
nonlinear filtering procedure. With the hyperelliptic
functions one can access only that part of the wave train
that contains all the solitons together with their requisite
interactions; individual solitons can never be filtered out
of the measured wave train [35].

(ii) With ® functions one can access the pairwise non-
linear (cnoidal wave-cnoidal wave) interactions through
nonlinear filtering techniques (Fig. 4). Nonlinear interac-
tions can never be directly computed with the hyperellip-
tic functions in the filtering process because the interac-
tions cannot be explicitly separated from the hyperelliptic
functions themselves.

(iii) With © functions one can perform nonlinear filter-
ing in a single step. Nonlinear filtering with the hyperel-
liptic functions is an iterative process [35].

(iv) With the ® functions one accesses the physically
relevant spectral components that are the cnoidal waves
themselves (they are solutions of the KdV equation) rath-
er than the hyperelliptic functions (which are not individ-
ually solutions of the KdV equation). The individual ®
functions can be computed in a single step. The hyperel-
liptic functions must be computed iteratively.

(v) Hyperelliptic functions are hard to compute numer-
ically directly from their respective ordinary differential
equations because of ill conditioning near the band edges
(or branch points) in the Floquet spectrum [34]. The ®
functions are easier to compute because they are not ill
conditioned anywhere in the spectrum.

All of these issues, and their implementation in terms
of the ®@-function representation, address the physical un-
derstanding of fundamental nonlinear effects in measured
wave trains. After applying ® functions to a variety of
nonlinear problems it has become clear that the linear
Fourier transform is not a very precise picture of non-
linear wave motions. The nonlinear modes for the KdV
equation are not sine waves; they are interacting cnoidal
waves. In the author’s opinion the implications of this
perspective on experiments and data analysis will be far
reaching and could well enhance our future appreciation
and understanding of nonlinear effects over a broad spec-
trum of physical phenomena in a wide variety of physical
systems.
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APPENDIX: COMPUTATION OF WAVE NUMBERS,
FREQUENCIES, PHASES,
AND INTERACTION MATRIX
IN THE ®-FUNCTION REPRESENTATION

This appendix summarizes the determination of the
wave numbers k;, frequencies w;, phases ¢;, and the
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period or interaction matrix B in the ®@-function solution
to the KdV equations (2.1)-(2.3) [10-16]; see also [1].
The formulation discussed in this appendix is the N-
dimensional generalization of the classical Jacobian ellip-
tic integrals [38,39]. Although some knowledge of alge-
braic geometry is necessary for the derivation of the fol-
lowing formulas, the results can be implemented numeri-
cally with only rudimentary understanding of algebraic-
geometric methods [36].

The @ function is 27 periodic in each of the N phases
nj
O((n;+2m),(n,+27), ..., (qgy+27))

=®(7717772’ e ’nN) .

Normalized holomorphic differentials on the Riemann
surface I are then introduced

E™ " \dE
R 1/2(E)

(A1)

N
dQ,.(E)= 3 C,, , (A2)
m=1
where R (E) is given by
IN+1
R(E)= ] (E—E;)
k=1

and the following normalization condition is assumed to
hold:

$ dq,(E)=2mis,; . (A3)
j

These are the “a; cycles” or contour integrals around the

open band (E,;,E,; ) in the Floquet spectrum. Com-

bining (A2) and (A3) provides the relations

< e _& E™"E
S Comdy =2miB » Ty = gﬁajm ., (A4)
which in matrix notation give
Cc=2mJ . (AS)

The normalization coefficients C,,, in (A2) are then given
by [34]
-1

. Em"\dE
Cjm =2mi ﬁaj 2N +1 172
II (E—E;)
k=1
| B E™~\dE -
—m szj N +1 172 (A6)
k=1

Note that each loop integral has been reduced to an ordi-
nary definite integral across an open band in the Floquet
spectrum. The phases 7; of the ® function (2.2) are
found by the Abelian integrals

nj(Pl’PZ" .. ,Pj)=—i z

=kx—w;t+¢; , (A7)

where w; is given by the second equation of (A8) below
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and P,,(x,t)=[u,,(x,t),0,,]for 1 =<m =<j. Equation (A7)
may be interpreted as a linearization of the hyperelliptic-
function representation of the flow, i.e., integration over
the holomorphic differentials (A2) from the lower band
edge E,; to the hyperelliptic functions p;(x,?) in effect
linearizes the p; (intrinsically nonlinear functions that
provide the solution to the KdV equation through a
linear superposition law) whose numerical evolution is
described in detail elsewhere [34]. This leads to the linear
®-function inverse problem for the KdV equation de-
scribed in Sec. II. Equations (A2) and (A7) are an Abel
transform pair. Generally speaking, the phase of the hy-
perelliptic functions 7; (A7) depends upon the main spec-
trum (E;, 1<i <2N +1) and the space-time evolution of
the auxiliary spectrum [u;(x,2),0;], 1=j<N.

It then follows that the wave numbers k; and frequen-
cies w; are given by

k;=2Cy; ,

2N +1 (A8)

+4Cy; 3 E;

i=1

(0] i = 8CN —1,j
Both k; and w; are real constants since the C;,, and the
E, are the real constants. The usual dispersion law for a
single degree of freedom may easily be obtained [34]. The
k; are commensurable wave numbers in the cycle integral
basis considered here, while the frequencies o ; are gen-
erally incommensurable.

The phases ¢; are found by fixing x =0 and =0 in

(A7) to get
¢;=—i z fp ° )dﬂj(E)
1 3 [ ERE - § ¢y,
e
(A9)
where
q)m:fym(o,oyw A1)

E2m RI/Z(E)

Thus the constant phases ¢; of the hyperelliptic functions
depend upon the starting values of the hyperelliptic func-
tions u£;(0,0) and the Riemann sheet indices o ;.

The period matrix is given by

Em-—ldE N
§ dQ,(E)= 2 c,,,,,ﬁ =3 CumBu;j >
(E) m=1
(A11)
where
. rEE™"VdE
B =2 e R E) i

where the integrals are over the “B cycles” of the theory
(for a discussion with regard to the numerical analysis see
Ref. [36]). A fast numerical algorithm for computing ®
functions is discussed elsewhere [36].
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